
NPBG++: Accelerating Neural Point-Based Graphics

Supplementary Material

A. Datasets
We validate the effectiveness of the proposed method on

four different datasets.

• ScanNet [8]: a large dataset that offers ample vari-
ety within the scenes. We use 78 scenes for train-
ing our pipeline and three holdout scenes to measure
the generalization of our approach. We select 10 test-
ing frames along the camera trajectory in each holdout
scene. From the remaining observations, we obtain the
source frames by excluding those closest to the test im-
ages to showcase our model’s generalization capabili-
ties.

• NeRF-Synthetic [30]: a high-quality synthetic dataset
with object-centric scenes. We use five of the scenes
to fine-tune our method and the three remaining scenes
for testing. For the train, the validation, and the test
image sets, we follow the original split.

• H3DS [34]: a dataset designed for the 3D reconstruc-
tion of human heads. It contains images, associated
camera poses, as well as accurate foreground masks.
We use eight scans for training and two for testing un-
der the 32 view setup.

• DTU [15]: is a multi-view stereo dataset with rela-
tively simple objects captured at a resolution of 1200 x
1600, with accurate camera positions. We use the sub-
set of 15 scenes manually annotated with binary seg-
mentation masks for IDR [61]. Out of 15, we use 12
for training and three holdout scenes with nine images
for test and five for validation.

DTU scenes for pretraining: scan{37, 40, 55, 63, 65,
69, 83, 97, 105, 106, 122}. ScanNet scenes for pretraining:
scene{2-3, 5-7, 9-10, 12-14, 16-21, 24-30, 32-36, 38-40, 42,
44, 46-47, 49-53, 55, 57-58, 60-63, 65, 67-68, 70-78, 80-94,
96-99}. H3DS scenes for pretraining: {1b2a8613401e42a8,
3b5a2eb92a501d54, 5cd49557ea450c89, 444ea0dc5e85ee0b,
609cc60fd416e187, 868765907f66fd85, e98bae39fad2244e,
f7e930d8a9ff2091}. NeRF scenes for pretraining: {chair, drums,
lego, materials, ship}

B. Implementation details
We don’t use batch normalization in any part of the system. We

remove bias in the final dense layer of the feature extractor. The
MLP network H(v) predicts learnable basis functions and con-
sists of one hidden layer of width 64. It uses positional encoding
similarly to NeRF [30]. We reduce the width of the refiner net-
work compared to the original one [1], reducing it to ⇡0.4 mln
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Figure 8. View selection and cropping. During training, we ran-
domly crop a target (reference) patch. a) We select three relevant
input views and apply input image alignment. b) We make the
crops of size twice larger compared to the target patch. Crops are
done so that as many points visible in the target patch (marked
with green color in the Figure) are projected inside the cropped
region. We do not resize crops.

parameters, as we see a boost in speed without a noticeable drop
in quality.

We train the system on 4 nVidia Tesla V100 16Gb GPUs. All
the experiments were performed using the PyTorch framework
[32], its higher-level neural network API PyTorch Lightning [9],
and Hydra framework [59] for configuring experiments. We use
Adam optimizer [20] with constant learning rate equal to 0.0001.
We perform training until convergence. We use the implemen-
tation for SPNASNet-100 [47] encoder for the feature extractor
network from [55]. We follow the PyTorch3d [35] convention for
world coordinates and working with perspective cameras. We use
the Kornia library [36] for color augmentatoins and homography
transforms.

The visibility reduction factor used for ScanNet data is r=1
and for all other datasets r=0 (see visibility definition in Sec. 3.1
- Estimating point’s visibility).

The process of View selection and Cropping, described in
Sec. 3.3, is illustrated in Figure 8.

C. Additional experiments

Style Transfer. We show one more possible application of our
approach: 3D style transfer. To this end, we modify the loss for-
mulation in Sec. 3.3 by setting �2 = 0, �3 = 0, and introducing
a style loss with weight equal to 1. We finetune the system for



Figure 9. Qualitative results of 3D scene stylization. The leftmost column shows one of the input views with the input style image on the
top-left corner. The other columns represent the stylization result at different novel views.

1 2 3 4 5 6 mln
points

60

100

140

180

220

260

300

340

380

420

Single
input image
processing
time (ms)

a) 3D modeling

426 x 240
640 x 360
854 x 480
800 x 800
1280 x 720
1920 x 1080

1 2 3 4 5 6 mln
points

20

40

60

80

100

120

140

160

Rendering
runtime

(ms)

b) Novel view synthesis

426 x 240
640 x 360
854 x 480
800 x 800
1280 x 720
1920 x 1080

Figure 10. Runtime evaluation. a) Single input image processing time (denoted U ) depends on image size and number of points and
includes time for feature extraction plus the time to update intermediate states. If we let P be the time required to obtain the point cloud
(e.g. using MVS), and denote with S the time required to compute Eq. 2, Eq. 3, then the 3d modeling stage total runtime is equal to P +
#images ⇥ U + S. S takes from 512 ms to 3059 ms when varying the number of points from 1 mln to 6 mln and does not depend
on image size. b). Rendering time depends on image size and number of points. On average, descriptors calculation step takes 0.05%,
rasterization step - 37.86%, refinement step - 57.85%, and output image alignment - 4.24% of total rendering time during novel view
synthesis. In principle, one can accelerate the rasterization step using an OpenGL implementation instead of a PyTorch-based one. The
time was measured using Nvidia GeForce 1080 Ti. The refinement step can also potentially be accelerated by using neural architecture
search and other common techniques.

five epochs on ScanNet train scenes and then infer the system on
a holdout scene. See qualitative results in Figure 9.

D. Runtime Details
The runtime of our system depends on the number of points

in the point cloud and the image size. We provide the detailed
analysis in Figure 10.

E. Additional results
We include the scores obtained by all methods on specific

scenes for all considered datasets. Table 5 contains a detailed ver-
sion of scores reported in Table 1
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Figure 11. Additional qualitative evaluations. Comparisons with otimization-based approaches (NPBG [1], NeRF [30]) and learning
based approaches (IBRNet [53], SVS [38]) on ScanNet [8], NeRF-Synthetic [30], DTU [15], H3DS [34] scenes.



Nerf-Synthetic - Hotdog Nerf-Synthetic - Ficus Nerf-Synthetic - Mic

Method Per scene
optimization PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

SVS [38] 7 25.70 0.933 0.107 20.29 0.883 0.132 22.44 0.940 0.072
IBRNet [53] 7 33.33 0.969 0.144 25.47 0.926 0.186 29.60 0.969 0.140
NPBG++ (Ours) 7 28.84 0.949 0.078 22.48 0.903 0.090 26.87 0.957 0.045

NPBG [1] 3 32.26 0.957 0.059 24.71 0.920 0.078 28.88 0.962 0.036
NeRF [30] 3 36.08 0.975 0.045 29.29 0.958 0.049 32.10 0.977 0.030
SVSft [38] 3 26.56 0.934 0.105 20.62 0.879 0.128 22.93 0.943 0.071
IBRNetft [53] 3 36.46 0.980 0.137 28.66 0.957 0.146 32.40 0.980 0.148
NPBG++ft-system (Ours) 3 27.16 0.948 0.072 23.48 0.911 0.082 28.08 0.962 0.037
NPBG++ft (Ours) 3 32.31 0.964 0.050 24.61 0.925 0.070 29.08 0.967 0.029

ScanNet - 0000 ScanNet - 0043 ScanNet - 0045

Method Per scene
optimization PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

SVS [38] 7 22.17 0.752 0.442 21.74 0.833 0.429 26.06 0.727 0.465
IBRNet [53] 7 19.54 0.703 0.535 24.42 0.859 0.434 26.07 0.719 0.513
NPBG++ (Ours) 7 20.66 0.738 0.530 22.63 0.845 0.464 26.04 0.716 0.511

NPBG [1] 3 22.24 0.695 0.474 25.27 0.830 0.421 27.75 0.686 0.482
NeRF [30] 3 22.08 0.729 0.588 25.98 0.869 0.466 29.15 0.743 0.558
SVSft [38] 3 21.30 0.559 0.535 21.24 0.737 0.531 24.38 0.533 0.562
IBRNetft [53] 3 20.14 0.714 0.528 25.56 0.868 0.427 27.57 0.741 0.523
NPBG++ft-system (Ours) 3 21.04 0.738 0.517 22.31 0.846 0.454 27.08 0.720 0.498
NPBG++ft (Ours) 3 22.05 0.742 0.457 25.51 0.859 0.410 28.26 0.716 0.477

DTU - 110 DTU - 114 DTU - 118

Method Per scene
optimization PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

SVS [38] 7 19.22 0.872 0.178 22.04 0.893 0.165 21.69 0.927 0.143
IBRNet [53] 7 23.77 0.923 0.238 27.42 0.910 0.231 26.24 0.938 0.225
NPBG++ (Ours) 7 21.13 0.907 0.161 24.57 0.904 0.164 24.00 0.933 0.137

NPBG [1] 3 24.65 0.916 0.123 26.74 0.891 0.137 26.62 0.932 0.114
NeRF [30] 3 25.55 0.917 0.194 27.42 0.894 0.217 27.78 0.928 0.182
SVSft [38] 3 17.57 0.842 0.208 21.57 0.860 0.192 23.01 0.889 0.171
IBRNetft [53] 3 23.69 0.915 0.238 25.43 0.913 0.193 22.28 0.923 0.237
NPBG++ft-system (Ours) 3 22.30 0.916 0.150 25.16 0.906 0.162 24.70 0.935 0.128
NPBG++ft (Ours) 3 24.84 0.929 0.122 26.72 0.911 0.134 26.67 0.945 0.113

H3DS - 5ae021f2805c0854 H3DS - 7dd427509fe84baa

Method Per scene
optimization PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

SVS [38] 7 19.24 0.763 0.230 18.68 0.833 0.189
IBRNet [53] 7 21.23 0.756 0.303 19.37 0.826 0.255
NPBG++ (Ours) 7 22.26 0.782 0.202 21.33 0.854 0.151

NPBG [1] 3 24.59 0.783 0.170 24.77 0.871 0.122
NeRF [30] 3 23.81 0.797 0.202 23.95 0.868 0.153
SVSft [38] 3 20.95 0.738 0.206 19.29 0.801 0.188
IBRNetft [53] 3 25.13 0.811 0.224 24.22 0.889 0.165
NPBG++ft-system (Ours) 3 24.08 0.795 0.182 23.49 0.876 0.127
NPBG++ft (Ours) 3 25.08 0.805 0.158 24.73 0.885 0.116

Table 5. Detailed quantitative evaluations. For each scene, we compute the metrics [67] on holdout frames. Subscript ft indicates
finetuned versions of the methods. In the case of NPBG++ft we directly finetune coefficients (�, �0) and the refiner. In the case of
NPBG++ft-system we finetune the feature extractor, aggregator (MLP: neural basis functions), and refiner.
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